4. Homework „Cubic forms. Wulff’s theorem".
5. Calculate the angle between the neighboring surfaces of a rhombododecahedron $\{110\}$ (see Fig. 1).
6. Find the Miller indices for the facets of the following cubic forms (see Figs. 2-3). Calculate the angle between the neighboring surfaces.
7. A cubic crystal growth has started from a seed crystal with the facets $\{100\}$ and $\{110\}$ and has a form depicted in Fig. 3. The specific surface energies of the (100) and (110) plane corresponds to σ_{1} and $\sigma_{2}\left(\sigma_{1} \neq \sigma_{2}\right)$, and the distances from the center to facets h_{1} and h_{2}, respectively. According to Wulff's theorem the certain crystal planes are preferred over others due to energy minimization arguments:

$$
\frac{\sigma_{1}}{h_{1}}=\frac{\sigma_{2}}{h_{2}}
$$

Define σ_{2} / σ_{1} ratio in order to obtain both surface types in the balance during the crystal growth?

Fig. 1 Rhombododecahedron

Fig 2. Cubic forms: cube and octahedron

Fig. 3 Cubic form

